International J. of Math. Sci. \& Engg. Appls. (IJMSEA)
ISSN 0973-9424, Vol. 11 No. III (December, 2017), pp. 113-122

CATEGORICAL PRODUCT OF TWO S-VALUED GRAPHS

P. VICTOR ${ }^{1}$ AND M. CHANDRAMOULEESWARAN ${ }^{2}$
${ }^{1}$ Mohamed Sathak Engineering College,
Kilakarai - 623 806, Tamilandu, India
${ }^{2}$ Saiva Bhanu Kshatriya College,
Aruppukottai - 626101, Tamilnadu, India

Abstract

Motivated by the study of products in crisp graph theory and the notion of S-valued graphs, in this paper, we study the concept of categorical product of two S-valued graphs.

1. Introduction

Graphs are, of course, basic combinatorial structures. Products of structures are a fundamental construction in mathematics, for which theorems abound in set theory, category theory, and universal algebra. One can expect many of the nice properties of products to be a result of a role played in some Category-theoretic construct. However, the graph product such as, [6] Cartesian product, Categorical product, Strong product and the lexicographic product do not arrive in that way. Thus, it is not surprising that good things happen when we take products of graphs; many unique and new ideas emerge.

Key Words : Graph operations, Product of Graphs, Semiring, S-valued graphs.
2000 AMS Subject Classification : 16Y60, 05C25, 05C76.
(c) http: //www.ascent-journals.com University approved journal (Sl No. 48305)

Algebraic graph theory can be viewed as an extension of graph theory in which algebraic methods are applied to problems about graphs [1]. Recently in [4], Chandramouleeswaran et.al. introduced the concept of semiring valued graphs, called S valued graphs. In [2] the authors have studied the regularity of S-valued graphs. In [5], the authors have discussed the concept of degree regular S-valued graphs. This motivated us to study, the notion of categorical product of two S-valued graphs and their regularity properties.

2. Preliminaries

In this section, we recall the basic definitions that are needed in the sequel.
Definition 2.1. [6] : The Categorical product of two graphs $G=(V(G) ; E(G))$ and $H=(V(H), E(H))$ is the graph denoted as $G \times H$, whose vertex set is $V(G) \times V(H)$, and for which vertices (g, h) and $\left(g^{\prime}, h^{\prime}\right)$ are adjacent precisely if $g g^{\prime} \in E(G)$ and $h h^{\prime} \in E(H)$. Thus $V(G \times H)=\{(g, h) \mid g \in V(G)$ and $h \in V(H)\}, E(G \times H)=\left\{(g, h)\left(g^{\prime}, h^{\prime}\right) \mid g g^{\prime} \in\right.$ $E(G)$ and $\left.h h^{\prime} \in E(H)\right\}$.
Definition 2.2 [3] : A semiring $(S,+, \cdot)$ is an algebraic system with a non-empty set S together with two binary operations + and \cdot such that
(1) $(S,+, \cdot)$ is a monoid.
(2) (S, \cdot) is a semigroup.
(3) For all $a, b, c \in S, a \cdot(b+c)=a \cdot b+a \cdot c$ and $(a+b) \cdot c=a \cdot c+b \cdot c$.
(4) $0 \cdot x=x \cdot 0=0 \forall x \in S$.

The element 0 in S is called the additive identity of the Semiring S.
Definition 2.3 [3] : Let $(S,+, \cdot)$ be a semiring. \preceq is said to be a canonical pre- order if for $a, b \in S, a \preceq b$ if and only if there exists $c \in S$ such that $a+c=b$.
Definition 2.4 [4] : Let $G=(V, E \subset V \times V)$ be a given graph with $V, E \neq \phi$. For any semiring $(S,+, \cdot)$, a semiring valued graph (or a S-valued graph) G^{S} is defined to be the graph $G^{S}=(V, E, \sigma, \psi)$ where $\sigma: V \rightarrow S$ and $\psi: E \rightarrow S$ is defined to be

$$
\psi(x, y)=\left\{\begin{array}{cc}
\min \{\sigma(x), \sigma(y)\} & \text { if } \\
\sigma(x) \preceq \sigma(y) \text { (or) } \sigma(y) \preceq \sigma(x) \\
0 & \text { otherwise }
\end{array}\right.
$$

for every unordered pair (x, y) of $E \subset V \times V$. we call $\sigma, a S$-vertex set and ψ an S-edge set of S-valued graph G^{S}.
Definition 2.5 [4]: Let $G^{S}=(V, E, \sigma, \psi)$ be the S-valued graph corresponding to a given crisp graph $G=(V, E)$. A S-valued graph $H^{S}=(P . L, \tau, \gamma)$ is called a S-subgraph of G^{S} if $H=(P, L)$ is a subgraph of G with $P \subset V, L \subset E, \tau \subset \sigma$ and $\gamma \subset \psi$. That is $\tau \subset \sigma \Rightarrow \tau(x) \preceq \sigma(x), x \in P$ and $\gamma \subset \psi \Rightarrow \gamma(x, y) \preceq \psi(x, y),(x, y) \in L \subset P \times P$.
Definition 2.6 [4]: Let $G^{S}=(V, E, \sigma, \psi)$ be a S-valued graph and $H^{S}=(P, L, \tau, \gamma)$ be its S-subgraph. H^{S} is called a S-subgraph of G^{S} induced by P if $P \subset V, L \subset E$, $\tau(x)=\sigma(x)$, for every $x \in P$ and $\gamma(x, y)=\psi(x, y)$ for every $(x, y) \in L$.
Definition 2.7 [4]: The open neighbourhood of v_{i} in G^{S} is defined as

$$
N_{S}\left(v_{i}\right)=\left\{\left(v_{j}, \sigma\left(v_{j}\right)\right) \mid\left(v_{i}, v_{j}\right) \in E \psi\left(v_{i}, v_{j}\right) \in S\right\} .
$$

The closed neighbourhood of v_{i} in G^{S} is defined as $N_{S}\left[v_{i}\right]=N_{S}\left(v_{i}\right) \cup\left\{\left(v_{i}, \sigma\left(v_{i}\right)\right)\right\}$,.
Definition 2.8 [5]: The degree of a vertex v_{i} of the S-valued graph G^{S} is defined as $\operatorname{deg}_{S}\left(v_{i}\right)=\left(\sum_{v_{j} \in N_{S}\left(v_{i}\right)} \psi\left(v_{i}, v_{j}\right), l\right)$ where l is the number of edges incident with v_{i}.
Definition 2.9 [4]: A S-valued graph G^{S} is said to be
(1) vertex regular if $\sigma(v)=a \forall v \in V$ and for some $a \in S$
(2) Edge regular if $\psi(u, v)=a \forall(u, v) \in E$ and for some $a \in S$.
(3) S-regular if it is both vertex as well as edge regular.

Definition 2.10 [5] : A S-valued graph G^{S} is said to be degree regular S-valued graph (d_{S}-regular graph) if $\operatorname{deg}_{S}(v)=(a, n) \forall v \in V$ and some $a \in S$ and $n \in Z_{+}$.
Definition 2.11 [2] : A graph G^{S} is said to be (a, k) regular if the underlying crisp graph G is k-regular and $\sigma(v)=a, \forall v \in V$.

3. Categorical Product of Two S-valued Graphs

In this section, we introduce the notion of categorical product of two S-valued graphs, illustrate with some examples, and prove simple properties.
Definition 3.1: Let $G_{1}^{S}=\left(V_{1}, E_{1}, \sigma_{1}, \psi_{1}\right)$ where $V_{1}=\left\{v_{i} \mid 1 \leq i \leq p_{1}\right\}, E_{1} \subseteq V_{1} \times V_{1}$ and $G_{2}^{S}=\left(V_{1}, E_{2}, \sigma_{2}, \psi_{2}\right)$ where $V_{2}=\left\{u_{j} \mid 1 \leq j \leq p_{2}\right\}, E_{2} \subseteq V_{2} \times V_{2}$ be two given S-valued graphs.

The Categorical product of two S-valued graphs G_{1}^{S} and G_{2}^{S} is defined by

$$
G_{\times}^{S}=G_{1}^{S} \times G_{2}^{S}=(V, E, \sigma, \psi),
$$

where $V=V_{1} \times V_{2}=\left\{w_{i j}=\left(v_{i}, u_{j}\right) \mid v_{i} \in V_{1}, u_{j} \in V_{2}\right\} ; 1 \leq i \leq p_{1} ; 1 \leq j \leq p_{2}$ the two vertices $w_{i j}=\left(v_{i}, u_{j}\right), w_{k l}=\left(v_{k}, u_{l}\right)$ are adjacent if $v_{i} v_{k} \in E_{1}$ and $u_{j} u_{l} \in E_{2}$. Then $E=\left\{e_{i j}^{k l}=\left(w_{i j}, w_{k l}\right) \mid e_{i}^{k}=v_{i} v_{k} \in E_{1}\right.$ and $\left.e_{j}^{l}=u_{j} u_{l} \in E_{2}\right\}$.
Define the S-valued functions, $\sigma: V \rightarrow S$ by $\sigma\left(v_{i}, u_{j}\right)=\min \left\{\sigma_{1}\left(v_{i}\right), \sigma_{2}\left(u_{j}\right)\right\}$ and $\psi: E \rightarrow S$ by $\psi\left(w_{i j}\right)=\min \left\{\psi_{1}\left(e_{i}^{k}\right), \psi_{2}\left(e_{j}^{l}\right)\right\}$.
Example 3.2: Consider the semiring $S=(\{0, a, b, c\},+, \cdot)$ with the binary operations ' + ' and '. defined by the following Cayley tables.

+	0	a	b	c
0	0	a	b	c
a	a	b	c	c
b	b	c	c	c
c	c	c	c	c

\cdot	0	a	b	c
0	0	0	0	0
a	0	a	b	c
b	0	b	c	c
c	0	c	c	c

In S we define a canonical pre-order \preceq by

$$
0 \preceq 0,0 \preceq a, 0 \preceq b, 0 \preceq c, a \preceq a, b \preceq b, c \preceq c, a \preceq b, a \preceq c, b \preceq c .
$$

Consider the two S-valued graphs G_{1}^{S} and G_{2}^{S} :

Then the categorical product $G_{\times}^{S}=G_{1}^{S} \times G_{2}^{S}=(V, E, \sigma, \psi)$ is

Here, $V=\left\{w_{11}, w_{12}, w_{13}, w_{21}, w_{22}, w_{23}\right\}$ and $E=\left\{e_{11}^{22}, e_{12}^{21}, e_{12}^{23}, e_{13}^{22}\right\}$.
The S-vertex set of $G_{1}^{S} \times G_{2}^{S}=\{a, b\}$ and the S-edge set of $G_{1}^{S} \times G_{2}^{S}=\{a\}$.
Theorem 3.3: The Categorical product of two S-regular graph is again a S-regular graph.
Proof: Let $G_{1}^{S}=\left(V_{1}, E_{1}, \sigma_{1}, \psi_{1}\right)$ and $G_{2}^{S}=\left(V_{2}, E_{2}, \sigma_{2}, \psi_{2}\right)$ be two S-regular graphs. That is, G_{1}^{S} and G_{2}^{S} is both vertex regular as well as edge regular.
Claim : $G_{\times}^{S}=(V, E, \sigma, \psi)$ is S-regular. That is to prove that, $\sigma\left(w_{i j}\right)$ is equal for all $w_{i j} \in V$ and $\psi\left(e_{i j}^{k l}\right)$ is equal for all $e_{i j}^{k l} \in E$.
Now by definition

$$
\sigma\left(w_{i j}\right)=\min \left\{\sigma_{1}\left(v_{i}\right), \sigma\left(u_{j}\right)\right\}=\left\{\begin{array}{lll}
\sigma_{1}\left(v_{i}\right) & \text { if } & \sigma_{1}\left(v_{i}\right) \preceq \sigma_{2}\left(u_{j}\right) \\
\sigma_{2}\left(u_{j}\right) & \text { if } & \sigma_{2}\left(u_{j}\right) \preceq \sigma_{1}\left(v_{i}\right)
\end{array}\right.
$$

Then in both the cases $\sigma\left(w_{i j}\right)$ is equal for all $w_{i j} \in V, 1 \leq i \leq p_{1}, 1 \leq j \leq p_{2}$.
This implies that $G_{x}^{S}=G_{1}^{S} \times G_{2}^{S}$ is vertex regular. Further,

$$
\begin{aligned}
\psi\left(e_{i j}^{k l}\right) & =\min \left\{\psi_{1}\left(e_{i}^{k}\right), \psi_{2}\left(e_{j}^{l}\right)\right\} \\
& =\min \left\{\sigma_{1}\left(v_{i}\right), \sigma_{2}\left(u_{j}\right)\right\} \quad\left(\because G_{1}^{S} \text { and } G_{2}^{S} \text { are } S-\text { regular }\right) \\
& =\left\{\begin{array}{ccc}
\sigma_{1}\left(v_{i}\right) & \text { if } & \sigma_{1}\left(v_{i}\right) \preceq \sigma_{2}\left(u_{j}\right) \\
\sigma_{2}\left(u_{j}\right) & \text { if } & \left.\sigma_{2}\left(u_{j}\right) \preceq \sigma_{1} v_{i}\right)
\end{array}\right.
\end{aligned}
$$

Thus $\psi\left(e_{i j}^{k l}\right)=\sigma_{1}\left(v_{i}\right)$ or $\psi\left(e_{i j}^{k l}\right)=\sigma_{2}\left(u_{j}\right)$ for all eges $e_{i j}^{k l} \in E$.
This implies that, $G_{\times}^{S}=G_{1}^{S} \times G_{2}^{S}$ is edge regular.
Thus the Categorical product, $G_{\times}^{S}=G_{1}^{S} \times G_{2}^{S}$ is a S-regular graph.

The converse of the above theorem need not be true in general, as seen from the following example.
Example 3.4: Consider the semiring ($S=\{0, a, b, c\},+, \cdot)$ as in the example 3.2.
Consider the S-valued graphs G_{1}^{S} and G_{2}^{S} and its categorical product G_{\times}^{S} :

Clearly $G_{\times}^{S}=G_{1}^{S} \times G_{2}^{S}$ and G_{1}^{S} are S-regular while G_{2}^{S} is not.
However, the following example gives that the product G_{x}^{S} is not S-regular eventhough one of the factors G_{1}^{S} or G_{2}^{S} is S-regular.
Example 3.5 : Consider the semiring $S=\{a, b, c\},+, \cdot$ as in the example 3.2.
Consider the S-valued graphs G_{1}^{S} and G_{2}^{S} and its categorical product G_{\times}^{S} :

$G_{\times}^{S}=G_{1}^{S} \times G_{2}^{S}$ is not S regular, eventhough G_{1}^{S} is S-regular while G_{2}^{S} is not for $b \preceq c$ in S.

The above example leads to the following theorem.
Theorem 3.6 : The Categorical product of two S-valued graphs is S-regular if the S-value corresponding to the S-regular graph is minimum among the S-values.
Proof : Let G_{1}^{S} and G_{2}^{S} be two S-valued graphs such that G_{1}^{S} is S-regular with the S-value is minimum among the S-values.

That is, $\sigma_{1}\left(v_{i}\right)=a$ for all $v_{i} \in V_{1}$ and for some $a \in S$, which is minimum in the semiring S.
Claim : $G_{\times}^{S}=G_{1}^{S} \times G_{2}^{S}$ is S-regular with the S-value $a \in S$.
Now, For any $w_{i j} \in V$,

$$
\begin{aligned}
\sigma\left(w_{i j}\right) & =\min \left\{\sigma_{1}\left(v_{i}\right), \sigma_{2}\left(u_{j}\right)\right\}=\min \left\{a, \sigma_{2}\left(u_{j}\right)\right\} \\
& =a \quad\left(\because a \preceq \sigma_{2}\left(u_{j}\right) \forall u_{j} \in V_{2}\right) .
\end{aligned}
$$

Thus $G_{\times}^{S}=G_{1}^{S} \times G_{2}^{S}$ is a vertex regular.
Since every vertex regular S-valued graph is edge regular, G_{\times}^{S} is edge regular.
Then, G_{\times}^{S} is S-regular with the S-value a, which is minimum among the S-values. This proves that G_{\times}^{S} is S-regular with S-value $\min \left\{\sigma_{1}\left(v_{i}\right), \sigma_{2}\left(u_{j}\right), 1 \leq i \leq p_{1}, 1 \leq j \leq p_{2}\right\}$.
Theorem 3.7: The Categorical product of two edge regular S-valued graphs is an edge regular S-valued graph.
Proof: Let $G_{1}^{S}=\left(V_{1}, E_{1}, \sigma_{1}, \psi_{1}\right)$ and $G_{2}^{S}=\left(V_{2}, E_{2}, \sigma_{2}, \psi_{2}\right)$ be two edge regular S-valued graphs.
Then $\forall e_{i}^{k} \in E_{1}$ and $\forall e_{j}^{l} \in E_{2}$, the values $\psi_{1}\left(e_{i}^{k}\right)$ and $\psi_{2}\left(e_{j}^{l}\right)$ are all equal.
Claim : $G_{\times}^{S}=G_{1}^{S} \times G_{2}^{S}$ is an edge regular S-valued graph.
That is to prove that $\psi\left(e_{i j}^{k l}\right)$ is equal for every $e_{i j}^{k l} \in E$. By definition

$$
\psi\left(e_{i j}^{k l}\right)=\min \left\{\psi_{1}\left(e_{i}^{k}\right), \psi_{2}\left(e_{j}^{l}\right)\right\}=\left\{\begin{array}{lll}
\psi_{1}\left(e_{i}^{k}\right) & \text { if } & \psi_{1}\left(e_{i}^{k}\right) \preceq \psi_{2}\left(e_{j}^{l}\right) \\
\psi_{2}\left(e_{j}^{l}\right) & \text { if } & \psi_{2}\left(e_{j}^{l}\right) \preceq \psi_{1}\left(e_{i}^{k}\right)
\end{array}\right.
$$

This implies that, $\psi\left(e_{i j}^{k l}\right)$ is equal for every edges $e_{i j}^{k l} \in E$.
Thus the categorical product of G_{1}^{S} and $G_{2}^{S}, G_{\times}^{S}=G_{1}^{S} \times G_{2}^{S}$ is again an edge regular S-valued graph.
Theorem 3.8 : The Categorical product of two degree regular S-valued graphs ($d_{S^{-}}$ regular) is again a degree regular S-valued graph.
Proof: Let G_{1}^{S} and G_{2}^{S} be two degree regular S-valued graphs.
Then $\operatorname{deg}_{S}\left(v_{i}\right)=\left(\sum_{v_{k} \in N_{S}\left(v_{i}\right)} \psi_{1}\left(v_{i} v_{k}\right), m\right)=(a, m)$ for some $a \in S$ and $\forall v_{i} \in V_{1}$. $\operatorname{deg}_{S}\left(u_{j}\right)=\left(\sum_{u_{l} \in N_{S}\left(u_{j}\right)} \psi_{2}\left(u_{j} u_{l}\right), n\right)=(b, n)$ for some $b \in S$ and $\forall u_{j} \in E_{2}$.

Claim : $G_{\times}^{S}=G_{1}^{S} \times G_{2}^{S}$ is degree regular S-valued graph. That is to prove that for all vertices $w_{i j} \in V, \operatorname{deg}_{S}\left(w_{i j}\right)=\left(\sum_{w_{k l} \in N_{S}\left(w_{i j}\right)} \psi\left(w_{i j} w_{k l}\right), r\right)$ is equal where r is the number of incident edges of $w_{i j}=\left(v_{i}, u_{j}\right)$ in G_{\times}^{S}.
In crisp graph, the number of incident edges of $w_{i j}=\left(v_{i}, u_{j}\right)$ is equal to the product of number of incident edges of v_{i} and the number of incident edges of u_{j}.
That is, The no. of incident edges of $w_{i j}=$
The no. of incident edges of $v_{i} \times$ The no. of incident edges of u_{j}.
This implies that, $r=m \times n=m n$.
Then, for any vertices $w_{i j} \in V, 1 \leq i \leq p_{1} ; 1 \leq j \leq p_{2}$.

$$
\begin{aligned}
\operatorname{deg}_{S}\left(w_{i j}\right) & =\left(\sum_{w_{k l} \in N_{S}\left(w_{i j}\right)} \psi\left(e_{i j}^{k l}\right), m n\right) \\
& =\left(\sum_{w_{k l} \in N_{S}\left(w_{i j}\right)} \min \left\{\psi_{1}\left(e_{i}^{k}\right), \psi_{2}\left(e_{j}^{l}\right)\right\}, m n\right) \\
& =\left(\sum_{1}^{m n} \min \left\{\sum_{k=1}^{m} \psi_{1}\left(e_{i}^{k}\right), \sum_{l=1}^{n} \psi_{2}\left(e_{j}^{l}\right)\right\}, m n\right) .
\end{aligned}
$$

Since G_{1}^{S} is d_{S}-regular, $\sum_{k=1}^{m} \psi_{1}\left(e_{1}^{k}\right)$ is eqaul for all edges $e_{i}^{k} \in E_{1}$ and G_{2}^{S} is d_{S}-regular, $\sum_{l=1}^{n} \psi_{2}\left(e_{j}^{l}\right)$ is equal for all edges $e_{j}^{l} \in E_{2}$.
Thus for all vertices $w_{i j} \in V$ of G_{\times}^{S},

$$
\operatorname{deg}_{S}\left(w_{i j}\right)=\left(\sum_{1}^{m n} \min \left\{\sum_{k=1}^{m} \psi_{1}\left(e_{i}^{k}\right) \psi_{2}\left(e_{j}^{l}\right)\right\}, \min \right)
$$

is equal.
Hence, every vertices of $G_{\times}^{S}=G_{1}^{S} \times G_{2}^{S}$ have the same degree.
This implies that, the Categorical product $G_{\times}^{S}=G_{1}^{S} \times G_{2}^{S}$ is a degree regular S-valued graph.
Proposition 3.9: Let $(S,+, \cdot)$ be a semiring and $a, b \in S$. If G_{1}^{S} is (a, m)-regular graph and G_{2}^{S} is (b, n)-regular graph then the Categorical product $G_{\times}^{S}=G_{1}^{S} \times G_{2}^{S}$ is either ($a, m n$)-regular or ($b, m n$)-regular graph, depending on $a \preceq b$ or $b \preceq a$ respectively.
Proof : Let $G_{1}^{S}=\left(V_{1}, E_{1}, \sigma_{1}, \psi_{1}\right)$ be a (a, m)-regular graph for some $a \in S$ and $m \in Z_{+}$. Then $\sigma_{1}\left(v_{i}\right)=a$ for all $v_{i} \in V_{1}$ and no. of incident edges of v_{i} is m.

Let $G_{2}^{S}=\left(V_{2}, E_{2}, \sigma_{2}, \psi_{2}\right)$ be a (b, n)-regular graph for some $b \in S$ and $n \in Z_{+}$. Then $\sigma_{2}\left(u_{j}\right)=b$ for all $u_{j} \in V_{2}$ and no. of incident edges of u_{j} is n.
Claim : $G_{x}^{S}=G_{1}^{S} \times G_{2}^{S}$ is either ($a, m n$)-regular or ($b, m n$)-regular graph.
Then we have to prove that $\sigma\left(w_{i j}\right)=a$ or $\sigma\left(w_{i j}\right)=b$ for some $a, b \in S$ and the number of incident edges of $w_{i j}$ is $k \in Z_{+}$for all vertices $w_{i j} \in V, 1 \leq i \leq p_{1} ; 1 \leq j \leq p_{2}$.
By Definition

$$
\begin{aligned}
\sigma\left(w_{i j}\right) & =\min \left\{\sigma_{1}\left(v_{i}\right), \sigma_{2}(j)\right\} \\
& =\min \{a, b\} \quad \text { (By (1) and (2)) } \\
& =\left\{\begin{array}{lll}
a & \text { if } & a \preceq b \\
b & \text { if } & b \preceq a
\end{array}\right.
\end{aligned}
$$

Thus for all vertices $w_{i j} \in V, \sigma\left(w_{i j}\right)=b, 1 \leq i \leq p_{1} ; 1 \leq j \leq p_{2}$.
This implies that, in both the cases, $G_{\times}^{S}=G_{1}^{S} \times G_{2}^{S}$ is vertex regular.
In $G_{\times}^{S}=G_{1}^{S} \times G_{2}^{S}$, the number of incident edges of any vertices $w_{i j}$ is equal to the product of number of incident edges of v_{i} and the number of incident edges of u_{j}.
Then from equation (1) and (2), we have
The no. of \cdot incident edges of $w_{i j}=m \times n=m n=k$ (say).
Thus the categorical product $G_{\times}^{S}=G_{1}^{S} \times G_{2}^{S}$ is vertex regular as well as all the vertices have the same number of incident edges.
Hence, $G_{\times}^{S}=G_{1}^{S} \times G_{2}^{S}$ is either (a, k)-regular or (b, k)-regular graph.

4. Conclusion

Motivated by the study of S-valued graphs in [4], [3] and [5], we studied the regularity and degree regularity conditions on the categorical product of two S-valued graphs. In future, we have proposed to study the notions of minimal and maximal degree and their properties on G_{\times}^{S}.

References

[1] Chris Godsil and Gordon Royle. Algebraic Graph Theory, Springer, (2001).
[2] Jeyalakshmi S., Rajkumar M. and Chandramouleeswaran M., Regularity on S valued graphs, Global J. of Pure and Applied Maths., 2(5) (2015), 2971-2978.
[3] Jonathan Golan, Semirings and Their Applications, Kluwer Academic Publishers, London.
[4] Rajkumar M., Jeyalakshmi S. and Chandramouleeswaran M., Semiring valued graphs, International Journal of Math. Sci. and Engg. Appls., 9(3) (2015), 141-152.
[5] Rajkumar M. and Chandramouleeswaran M., Degree regular S-valued graphs, Mathematical Sciences International Journal of Math. Sci. and Engg. Appls., 4(2) (2015).
[6] Richard Hammack, Wilfried Imrich and Sandy Klavzar, Handbook of Product Graphs, University of Ljubljana and University of Maribor, Slovenia.

